

These educational materials were created by Science Plus.
Illustrations, typesetting and layout by
Robert Browne Graphics.

For more information on Amusement Park Science
contact Steve Simms
simms_s@surreyschools.ca

Vancouver, B.C., Canada
April 2024

Amusement Park Physies
 and the new Secondary School Curriculum

Over the past few years, the educational system has seen a shift in the science curriculum and changes to how that curriculum is delivered. The current curriculum is more inquiry based with a focus on questioning, predicting, communication, planning and conducting investigations. In addition, students are asked to analyse not only the data they collect, but also the process that was used to collect the data.

The curriculum for Science has changed. Although forces are not directly in the curriculum, inquiry and investigation are at the forefront. Amusement Park Physics can now be applied to any number of classes as they all include an inquiry / investigative component. Teachers are able to adapt or enhance the curriculum packages currently supplied by Amusement Park Physics as they see fit. This gives you, as an educator, tremendous flexibility in terms of how you and your class spend your time at Playland. You could focus on one ride and do an in-depth study or perhaps investigate similar rides and compare them.

In addition, classes could choose to investigate / discuss Newton's three (3) laws and then attend Amusement Park Physics to apply them. This initial investigation could be done as a class or individually as a project.

This year's curriculum reflects the different demands that are placed on students in Science. We have sought to align the worksheets with the Provincial Ministry Physics 11 and Physics 12 guidelines.

Amusement Park Physics is designed to get students to get out of their classroom and explore real life science applications. Based on the current curriculum, students need to be able to design an investigation from start to finish, this includes data collection, analyst of results and communicating a conclusion.

Amusement Park Physies

We are excited to welcome you back to Playland for what is the 36th year of Amusement Park Physics. Although we have missed some time due to the pandemic, we are eager for teachers and students to get back into the park and apply their scientific knowledge to all the amazing rides.
This project was started by James (Jim) Wiese in 1988 with his senior Physics students and was expanded in 1990 with the addition of the Grade 9 program. A while later Jim added an elementary school version called The Science of Fun. In 2008 a French Version for elementary schools was added called LaScience du Plaisir and a curriculum for Grade 8 and Grade 10 Science. 2011 saw the addition of a version for Biology 12 (Anatomy \& Physiology 12) and in 2012 Chemistry 11 and Chemistry 12 were added. A special thanks to Mike Eckert at Lord Tweedsmuir for helping with the Chemistry Module. 2016 saw the addition of activity sheets for the Beast and Haunted House. Rather than having them for specific grades, we added questions at the bronze, silver, and gold level. This allows teacher to choose the appropriate level for their students.

The purpose of Amusement Park Physics is to provide students with practice applying concepts learned in the classroom to real situations and experiences felt and seen on the rides. While working with a group of their peers or individually, students can problem solve, discuss possible solutions, communicate their ideas, and finally come to a conclusion about what they are experiencing. The process is far more important and rewarding than the final answer.

Due to the success of Amusement Park Physics, we have spread the event to five days in the spring and one day in the fall. You may choose any of these days but we will be limiting numbers to 2500 students per day. These will be filled on a first come basis. This should help eliminate any lineups at the rides to ensure students make measurements multiple times on each ride.

There is a curriculum package for each grade level - Science 8, Science 10, Physics $11 / 12$, Chemistry $11 / 12$ and Anatomy \& Physiology 12. You may choose to only download and print the version(s) that you will be using. Please feel free to adapt any materials to better suit your needs.

I'd like to thank all those involved in Amusement Park Physics 2024: Michelle Pattison, Jacob Simms, Rob Decman, Jennifer Campbell, Peter Male and all the staff of the Pacific National Exhibition and Playland for their support. The work and dedication of all these people make Amusement Park Physics 2024 possible.

2024 marks the first year that Jim Wiese will be taking a behind the scenes role and enjoying retirement a little more. It's a real honour that Jim has asked me to keep Amusement Park Physics moving forward and guarantee that for the coming years, students will be welcome at the park to apply all the scientific principles that they have learnt in class. As a former physics 11 attendee of Amusement Park Physics and now as a teacher, I understand the important of having students get outside the classroom and explore science in a fun and engaging setting.

Look forward to seeing you at Playland,
Steve Simms

Materials in this package are under copyright with James Wiese and Science Plus. Permission is hereby given to duplicate this material for your use and for the use of your students, providing that credit to the author is given.

New Safety Regulations at Playland

Due to newly aligned amusement ride safety regulations in BC , hand-held measuring devices, or anything classified as a "loose item", are not permitted on amusement park rides and attractions.

As portable G-Meters and accelerometers are no longer permitted, we recommend the use of a third-party accelerometer app on securely stored cell phones in place of these devices. Seach for "accelerometer" and "roller coaster" to review the options available. Although we don't endorse any specific apps, we have found the free app Phyphox to be effective. Please ensure accelerometer apps are downloaded to all devices in advance as Playland does not have Wi-Fi on site.

To securely store cell phones during ride cycles, students are permitted to bring their own arm bands or hip packs. Playland has a limited number of arm bands or hip packs that can be used by students who do not bring their own. Please ensure students who borrow Playland items return them at the end of each ride cycle.

As students are not permitted to hold devices while the ride is in operation, please ensure the app has been started prior to loading, as use of the app is not permitted while the ride is in motion.

Be sure to know and understand the orientation of the cell phone to properly interpret the data. We suggest you practice using it before coming to the park to understand how the data is interpreted with different orientations. Depending on your level of understanding and familiarity using the app(s), you may want to use the absolute value feature that will allow you to see just the magnitude.

The use of cell phone accelerometers is not required to experience Amusement Park Science. The exciting curriculum provides other questions or investigation opportunities that can be incorporated with many of our rides without the use of these accelerometers.

Note: Using your cellphone on a field trip is your responsibility. Playland is not responsible for any lost or damaged items.

Table of Contents

page	i	Introduction
page	ii	Sample Timeline
page	iii	Site Map

SECTION A	MAKING MEASUREMENTS	
page A-1	Time	
page	A-1	Distance
page	A-3	Speed
page	A-4	Acceleration
page	A-6	Parabolic Paths
page	A-6	Coaster Hill Shapes
page	A-7	Speed of a Falling Coaster
page	A-8	Physiology of Amusement Park Rides
page	A-9	Ride Design
page A-10	Useful Formulae	

SECTION B CONSTRUCTING THE EQUIPMENT
page B-1 Astrolab

Introduction

The accompanying materials have been divided into several sections: one with information concerning measurements, one containing information on instrument construction, and one with the ride worksheets. Teachers are given flexibility for its use but are reminded that this educational program is used by many schools.

We try to have consistency between schools' implementation by asking each teacher to remind their students that this is an educational event. A rule of thumb is to have each student or group of students complete 3 or 4 of the modules. That is a reasonable expectation for them and keeps them on task during the day. Schools that are wishing to use this event as a reward for "hard work" through the year and that do not intend to have their students working on this material are asked to make arrangements to visit Playland at another time.

Students must be using the following materials throughout the day:

1. Packet of activities
2. Pencil
3. Timing devices (digital watches with stopwatch mode are nice)
4. Calculator

Critical Safety Note

As hand-held devices are not permitted on amusement park rides, students may use accelerometer apps installed in advance on cell phones. During rides, phones must be securely stored in arm bands or hip packs.

Sample Timetable

Please adapt to fit your circumstances

Time Schedule

8:30	Buses leave school
$9: 15$	Arrive at Playland
$9: 30$	Enter Playland Amphitheatre for opening session
$9: 45-10: 00$	Opening Presentation at Playland Amphitheatre
$10: 00$	Gates to Playland open to admit students
$10: 00-2: 00$	Carry out pre-planned activities involving observations and measurements of selected aspects of the rides. Arrange a meeting time with your teacher for problems that arise or questions you have.
$2: 00$	Playland closes and event ends
$2: 15$	Board buses for return to school
$3: 00$	Buses arrive back at school

Things to Bring:

B BRING A LUNCH (You will NOT be allowed to leave the park for lunch)
\square BRING A PENCIL
\square Bring a calculator
\square Don't forget to bring this assignment package!
\square Bring a watch with a second hand or digital seconds to record times on the rides. A digital watch with a stopwatch mode works very well.
\square Return all equipment (dropper bottles, chemicals, etc.) to your teacher when you are not using them during the day. You'll be sharing them with other students and we need to make sure everyone gets a chance to use them.

SITE MAP
 Playland Amusement Park

\uparrow

Honey
Bee
Express

Dizzy
Drop

Hastings Street

Section A Making Measurements

page	A-1	Time
page	A-1	Distance
page	A-3	Speed
page	A-4	Acceleration
page	A-6	Parabolic Paths
page	A-6	Coaster Hill Shapes
page	A-7	Speed Of A Falling Coaster
page	A-8	Physiology of Amusement Park Rides
page	A-9	Ride Design
page A-10	Useful Formulae	

Time

The times that are required to work out the problems can easily be measured by using a watch with a second hand or a digital watch with a stop watch mode. When measuring the period of a ride that involves harmonic or circular motion, measure the time for several repetitions of the motion. This will give a better estimate of the period of motion than just measuring one repetition. You may want to measure the time two or three times and then average them.

Distance

Since you cannot interfere with the normal operation of the rides, you will not be able to directly measure heights, diameters, etc. All but a few of the distances can be measured remotely using the following methods. They will give you a reasonable estimate. Try to keep consistent units, i.e. meters, centimeters, etc., to make calculations easier.

Pacing: Determine the length of your stride by walking at your normal rate over a measured distance. Divide the distance by the number of steps and you can get the average distance per step. Knowing this, you can pace off horizontal distances.

My pace $=$ \qquad m

Ride Structure: Distance estimates can be made by noting regularities in the structure of the ride. For example, tracks may have regularly spaced cross-members as shown in figure \boldsymbol{a}. The distance \mathbf{d} can be estimated, and by counting the number of cross members, distances along the track can be determined. This method can be used for both vertical and horizontal distances.

figure a

Triangulation: For measuring height by triangulation, an astrolab such as that shown in figure \boldsymbol{b} can be constructed.

Practice this with the school flagpole before you come to Playland.

Suppose the height $\mathbf{h}_{\mathbf{T}}$ of the Coaster must be determined.
(1) Measure the distance between you and the ride. You can pace off the distance.
distance $\mathbf{d}=$ \qquad m
(2) Measure the height of the string hole.
string hole height $\mathbf{h}_{\mathbf{2}}: \mathbf{h}_{\mathbf{2}}=$ \qquad m
(3) Take a sighting at the highest point of the ride.
(4) Read off the angle of elevation.
angle of elevation \qquad。

Then since

$$
\begin{aligned}
& h_{1} / d=\tan \varnothing \\
& h_{1}=d(\tan \varnothing)
\end{aligned}
$$

(5) Look up the tangent value for the angle measured: tangent value: \qquad

angle	tangent	angle	tangent	angle	tangent
0°	.00	30°	.58	60°	1.73
5°	.09	35°	.70	65°	2.14
10°	.18	40°	.84	70°	2.75
15°	.27	45°	1.00	75°	3.73
20°	.36	50°	1.19	80°	5.67
25°	.47	55°	1.43	85°	11.43

(6) Multiply this tangent value by the distance from the ride:

$$
\mathbf{h}_{1}=\ldots \ldots \mathrm{m}
$$

(7) Add this product to the height of the string hole:
$+h_{2}=$ \qquad m

This number is the height of the ride.
$\mathbf{h}_{\mathrm{T}}=$ \qquad m

Other: There are other ways to measure distance. If you can think of one, use it. For example, a similar but more complex triangulation could be used. If you can't measure the distance \mathbf{L} because you can't get close to the base of the structure, use the Law of Sines as in figure celow.

Knowing $\boldsymbol{\emptyset}_{1}, \boldsymbol{\emptyset}_{2}$, and \mathbf{L}, the height \mathbf{h} can be calculated using the expression:

$$
\mathbf{h}=\left[\frac{\sin \boldsymbol{\emptyset}_{1} \sin \boldsymbol{\emptyset}_{2}}{\sin \boldsymbol{\emptyset}_{2}-\sin \emptyset_{1}}\right] \mathbf{L}
$$

Speed

In linear motion, the average speed of an object is given by:

$$
\mathrm{V}_{\mathrm{ave}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{\text { distance travelled [in m] }}{\text { time for trip [in sec.] }}
$$

In circular motion, where speed of rotation is constant:

$$
\mathrm{V}_{\mathrm{ave}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{2 \pi \mathrm{r}}{\Delta \mathrm{t}}=\frac{\text { distance in circumference of a circle [in m] }}{\text { time for one revolution [in sec.] }}
$$

Challenge

Both these cases involve fairly constant speed. Be careful of measuring speed when the speed is changing. If you want to determine the speed at a particular point on the track, measure the time that it takes for the length of the train to pass that particular point.
The train's speed then is given by:

$$
\mathrm{V}_{\mathrm{ave}}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{\text { length of train }[\mathrm{in} \mathrm{~m}]}{\text { time to pass point }[\text { in sec. }]}
$$

In a situation where it can be assumed that total mechanical energy is conserved, the speed of an object can be calculated using energy considerations. Suppose the speed at point C is to be determined (see figure \boldsymbol{d}). From the principle of conservation of total mechanical energy it follows that:

$$
\begin{aligned}
& \mathrm{PE}_{\mathrm{A}}+\mathrm{KE}_{\mathrm{A}}=\mathrm{PE}_{\mathrm{C}}+\mathrm{KE}_{\mathrm{C}} \\
& \mathrm{mgh}_{\mathrm{A}}+1 / 2 \mathrm{mv}_{\mathrm{A}}^{2}=\mathrm{mgh}_{\mathrm{C}}+1 / 2 \mathrm{mv}_{\mathrm{C}}^{2}
\end{aligned}
$$

Since mass is constant, solving for v_{C} :

$$
\mathrm{V}_{\mathrm{C}}=\sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{C}}\right)+\mathrm{v}_{\mathrm{A}}^{2}}
$$

figure d

Thus by measuring the speed of the train at point A, and the height h_{A} and h_{C}, the speed of the train at point C can be calculated.

Acceleration

Accelerometers are designed to record the g forces felt by a passenger. Accelerometers are usually oriented to provide force data perpendicular to the track, longitudinally along the track, or laterally to the right or left of the track (see figure e).

Accelerometers are calibrated in \mathbf{g} 's. A reading of 1 g equals an acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. As you live on earth, you normally experience 1 g of acceleration vertically (no g 's laterally or longitudinally). Listed below are the sensations of various ' g forces'. These are rough estimates, but may be helpful in estimating accelerations on the various rides.

Accelerometer Reading	Sensation
3 g	3 times heavier than normal (maximum g's pulled by space shuttle astronauts)
2 g	twice normal weight
1 g	normal weight
0.5 g	half-normal weight
0 g	weightlessness (no force between rider and coaster) -0.5 g half-normal weight - but directed upward away from coaster seat (weight measured on bathroom scale mounted at rider's head!)

Centripetal Acceleration

With uniform circular motion remember that: $\quad v=\frac{2 \pi r}{t}$

$$
\text { and the centripetal acceleration is given by: } \quad a_{c}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{t^{2}}
$$

where \mathbf{r} is the radius of the circle and \mathbf{t} is the period of rotation. Thus centripetal acceleration can be measured on a ride.

Vertical Acceleration

Gravity is always acting on you at a vertical acceleration rate of approximately $9.81 \mathrm{~m} / \mathrm{s}^{2}$. Any acceleration (g 's) due to the ride must be added or subtracted to this gravitational force depending on the direction. If you're only trying to solve for the forces exerted by the ride, the raw reading on the accelerator app on your phone will be correct.

Longitudinal Acceleration

Acceleration of a person on a ride can also be determined by direct calculation. Down an incline, the average acceleration of an object is defined as:

$$
\mathrm{a}_{\mathrm{ave}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\frac{\text { change in speed }}{\text { change in time }}
$$

Using methods previously discussed it is possible to estimate speeds at both the top and bottom of the hill and the time it takes for the coaster to make the trip. Thus, average acceleration can be found during that portion of the ride.

Smart Phone Accelerometers

As hand-held G-Meters and accelerometers are no longer permitted, we recommend the use of a third-party accelerometer app on securely stored cell phones in place of these devices. Seach for "accelerometer" and "roller coaster" to review available apps. Although we don't endorse any specific apps, we have found the free app Phyphox to be effective. Please ensure apps are downloaded to devices in advance as Playland does not have Wi-Fi on site.

To securely store cell phones during rides, students are permitted to bring their own arm bands or hip packs. Playland has a limited number of arm bands or hip packs that can be used by students who do not bring their own. Please ensure students who borrow Playland items return them at the end of each ride cycle. Please ensure the app has been started prior to loading, as using the app is not permitted while the ride is in motion.

Be sure to know and understand the orientation of the cell phone to properly interpret the data. We suggest you practice using it before coming to the park to understand how the data is interpreted with different orientations. Depending on your level of understanding and familiarity using the app(s), you may want to use the absolute value feature that will allow you to see just the magnitude.

The use of cell phone accelerometers is not required to experience Amusement Park Science. The exciting curriculum provides other questions or investigation opportunities that can be incorporated with many of our rides without the use of these accelerometers.

Note: Using your cellphone on a field trip is your responsibility.
Playland is not responsible for any lost or damaged items.

Parabolic Paths

A coaster has a shape called a parabola.

The curves on the graph show three different parabolic coaster hills for three different hilltop speeds:

Describe a relationship between the sharpness or smoothness of coaster hills and their speeds.
\qquad
\qquad

Can you explain why coasters are built in this manner?
\qquad
\qquad
\qquad

Coaster Hill Shapes for Different Speeds at the Park

Use this graph to predict hilltop speeds for as many hilltops as you can identify on Coaster or the Flume. Use the space provided to try to identify the location of the hilltop in question (e.g. right before first hill - the examples are hypothetical, and may not correspond to actual hilltops).

Ride	Speed (fast or slow)	Location of Hilltop

Speed of a Falling Coaster (assumes a free fall parabolic arc)

The graph shows the coaster's speed as a function of falling distance. The graph assumes no speed at the hilltop, and no energy losses to friction and air resistance. This will help you estimate the speed on various hills.

As the coaster falls and its speed increases, gravitational potential energy is converted to kinetic energy.

What is the speed after falling:
\qquad 10 m \qquad 20 m \qquad

How far does the coaster have to fall to be travelling:

20 km/h \qquad 40 km/h \qquad 60 km/h \qquad

On a coaster, part of the gravitational potential energy is converted into the heat of friction and the kinetic energy of moving air particles pushed by the moving coaster. Since this is the case, are actual coaster speeds greater or less than those shown on the graph?

What does the shape of this graph tell you about the relationship between the variables graphed (speed vs meters fallen)? Explain why the shape of the graph makes sense.

Physiology of Amusement Park Rides

For each of the rides listed below, measure your pulse rate and breathing rate before and after the ride. Indicate any symptoms that you had by placing numbers of those appropriate from the list below.

Symptoms:

1. dry mouth
2. cold hands/feet
3. upset stomach
4. dizziness
5. enlarged eye pupils
6. fast breathing
7. tense muscles
8. trembling
9. stomach butterflies
10. unable to move
11. sweaty hands
12. other: \qquad

Ride	Pulse Rate before		Breathing Rate before after		before	
The Beast						
Break Dance						
Coaster						
Enterprise						
Flume						
Gladiator						
Hellevator						
Hell's Gate						
Pirate Ship						
Rock-N-Cars						
Scrambler						
Sea-Sky Swinger						
Skybender						

Ride Design

(1) Amusement Park rides are designed to give the illusion of danger and speed.

Which rides, based on the symptoms that you had, seem to give the greatest illusion?

2 Based on your observations, how could an amusement park design a ride to give a greater illusion of speed and danger? Diagram your design below.

Useful Formulae

$$
\begin{array}{lll}
\mathrm{F}=\mathrm{ma} & \mathrm{E}_{\mathrm{P}}=\mathrm{mgh} & \mathrm{E}_{\mathrm{K}}=1 / 2 \mathrm{mv}^{2} \\
\mathrm{mgh}=1 / 2 \mathrm{mv}^{2} & \mathrm{v}^{2}=2 \mathrm{gh} & \mathrm{v}=\sqrt{2 \mathrm{gh}} \\
\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{p}=\mathrm{m} \cdot \mathrm{v} & \\
\mathrm{~W}=\mathrm{F} \cdot \mathrm{~d} & \mathrm{P}=\frac{\mathrm{w}}{\mathrm{t}} \\
\mathrm{~d}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right) \mathrm{t} & \mathrm{~d}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{at}^{2} \\
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at} & \mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{ad} \\
\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}} & \mathrm{~F}=\frac{\mathrm{mv}}{\mathrm{r}} \\
\mathrm{a}=\frac{4 \pi^{2} \mathrm{r}}{\mathrm{t}^{2}} & \mathrm{~F}=\frac{\mathrm{m} 4 \pi^{2} \mathrm{r}}{\mathrm{t}^{2}} \\
\mathrm{t}_{\mathrm{f}}=\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}} & \\
\mathrm{~m}_{\mathrm{f}}=\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}} & \\
l_{\mathrm{f}}=l_{\mathrm{i}} \times \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}} & \\
\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Section B
 Constructing The Equipment

page B-1 Astrolab

ASTROLAB

Triangulation Instrument and Accelerometer

1. Cut out the Astrolab.
2. Fold the top section over a pencil and roll it down to the heavy double line to make a sighting tube.
3. Tape the rolled paper tube closed and then let the pencil slide out.
4. Glue the Astrolab to a 8 " $\times 5$ " index card and trim.
5. Take about 20 cm of heavy thread and tie one end to a weight such as a key or washer. Tie the other end through the hole at the top of the Astrolab.
6. Let the thread hang free. The angle it marks is the angular height of an object seen through the tube.

An object on the horizon has an angular height of 0 degrees.

An object directly overhead has an angular height of 90 degrees.

Amusement Park Physics
Section B • Constructing the Equipment

Section C Physics II Worksheets

page	C-1	Atmosfear
page	C-3	Coaster
page	C-5	Pirate Ship
page	C-7	Skybender
page	C-8	Rock-N-Cars
page C-10	Hellevator	
page C-12	Hell's Gate	
page C-14	Flume	
page C-16	Gladiator	
page C-18	The Beast	
page C-21	Physics 11 Quiz	

Atmosfear

A. Data

(1) Distance from center of rotation to chain attachment \qquad m
(2) Length of chain \qquad m
(3) Radius of rotation \qquad m
(4) Time for one revolution \qquad s
(5) Angle of swing to rotation axis \qquad ${ }^{\circ}$
(6) Accelerometer reading \qquad g's

B. Qualitative Tasks

(1) Will an empty swing or one with someone in it ride higher? Why?
\qquad
\qquad
\qquad
\qquad
(2) Describe your sensations as the ride increased in speed.
\qquad
\qquad
\qquad
(3) Explain your sensations described in \#2 using what you know about the physics of the ride.

4 Watch the ride from the beginning until it reaches full speed. What happens to the angle of the chain attached to the seats as the ride increases in speed? Why?
\qquad
\qquad
\qquad
\qquad
C. Quantitative Calculations
(1) Using the radius of rotation, determine the speed and centripetal acceleration of the ride. Determine the centripetal force.
\qquad m/s
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(2) Draw a vector diagram of the forces acting on you during the ride. The forces are due to the different accelerations you are undergoing. Use the angle of the swing to make your vector diagram as accurate as possible.
(3) Using the calculations in \#1, the vector diagram in \#2 and the acceleration due to gravity ($9.8 \mathrm{~m} / \mathrm{s}$), determine the resultant acceleration that you should feel. How many g's was it?
(4) Compare the value in \#3 to your accelerometer reading. Explain any similarities or differences. What is your percent error?
(5) From \#3 above, determine the angle at which you should have been swinging. Compare this to Data \#5. Explain any differences.
\qquad
\qquad
\qquad
\qquad
C-2

Coaster

A. Data

Length of track $1,001 \mathrm{~m}$

Measurements while standing in line:

Time for ride: \qquad s

Length of train: \qquad m
(hint: length of car \times number of cars)

Measurements during the ride (using cell phone accelerometer)
(Hint: Sit in rear cars to make measurements on ride)
Maximum g \qquad g's at \qquad (location*)
*if you can tell from the cell phone accelerometer
Minimum \mathbf{g} \qquad g's at \qquad (location*)

Measurements from observation area:

1. Distance from hill to observation area: \qquad m

Angle: \qquad ${ }^{\circ}$

Calculated height of hill: \qquad m
2. Time for train to go from bottom to top of first hill \qquad s
3. Time for train to pass point at top of hill \qquad s
4. Time for train to pass point at bottom of hill \qquad s
5. Time for train to go from top of hill to bottom \qquad s

B. Qualitative Observations

(1) Where was the highest hill on the ride? Why is it there?
\qquad
\qquad

2
Did you feel lateral forces while on the ride (i.e. were you thrown from side to side in the train car)? If so, what forces caused that feeling? Use a diagram if necessary to help explain.
\qquad
\qquad
\qquad
\qquad
(3) Where on the ride did you feel you were going the fastest? Why?
(4) Where on the ride did you feel like you were lifted off your seat? How did the ride cause that feeling?
(5) Draw a free body diagram labeling the forces acting on you at the bottom of the first hill.

Is the net force greater or less than normal?
\qquad
\qquad
\qquad
\qquad
\qquad
calculations

C. Quantitative Calculations

(1) Average speed of train for total ride (show work):
\qquad m / s
\qquad km / h
(2) Speed at top of first hill (show work):
\qquad
m / s
\qquad km / h
(3) Speed at bottom of first hill (show work):
\qquad m/s
\qquad km / h
(4) Calculate the acceleration of the train during the trip down the first hill.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
5) If each car has a mass of 1200 kg , and assuming the coaster is filled with riders whose average mass is the same as yours, how much total work is done getting the filled coaster to the top of the first hill?
\qquad J

6 How much power does the motor have to put out in order to lift the loaded coaster to the top of the first hill? (Answer in both watts and horsepower: 746 watts $=1 \mathrm{hp}$)
\qquad watts
\qquad hp

Pirate Ship

A. Data
(1) Time for one period (complete cycle) \qquad s

2 Estimated radius of the ship's path \qquad m
(3) Maximum angle of displacement
(4) Maximum accelerometer reading
\qquad ${ }^{\circ}$
(5) Maximum height reached by the car \qquad m
(6) Approximate mass of car and riders \qquad kg

B. Qualitative Tasks

(1) Consider the rocking boat described above as a pendulum. In a simple pendulum, the mass is considered to be concentrated at the end of a weightless string.

A simple pendulum at small displacements exhibits simple harmonic motion with the period \mathbf{t} of the pendulum's swing expressed by the following relationship:

$$
\mathrm{t}=2 \pi \sqrt{\left.\frac{\mathrm{~L}}{\mathrm{~g}} \right\rvert\,} \quad \text { Where } \mathbf{L}=\text { the length of the pendulum's string. }
$$

Calculate the period of the Pirate if it were a pendulum.
\qquad
S

2 From your results above, decide if the boat is a simple pendulum. Why or why not?
(3) In each arc, where did you feel:
a) the strongest push against your back?
b) the most pressure against your seat?
c) the least pressure against your seat?
(4) When did you feel you were going the fastest?

C. Quantitative Calculations

(1) Calculate the distance of the ship's arc.
(2) Calculate the ship's average speed in the arc.
a) \qquad m/s
b) \qquad km/h
(3) Calculate the potential energy of the ride at its highest point.
(4) Use the Law of Conservation of Energy (E initial = E final) to determine the velocity of the ride at its lowest point. Compare that value to what you calculated in question 2 and explain any differences.

Data

Estimated distance from centre of rotation to seat (when in the rest position) \qquad m

Estimated distance from centre of rotation to seat (in extended position) \qquad m

Time for one revolution of the ride at max speed \qquad sec

Accelerometer reading from the app \qquad g's

Questions

(1) Calculate the average speed of the rider as they move in a circle at maximum speed.

(hice
(2) Using a vector diagram, show the direction of your acceleration.

(3) Does the total energy decrease or increase as you go outward? Explain.
\qquad
\qquad
(4) If the radius of the ride was halved, by what factor would your kinetic energy change?
(5) Using the average reading from the accelerometer, calculate the radius of the ride.
$\mathrm{a}_{\mathrm{c}}=\mathrm{v}_{2} / \mathrm{r}$

Rock-N-Cars

A. Qualitative Tasks

Make observations that will allow you to answer the following questions. State the observed facts that justify each of your answers.

1 If your car is hit head on by another car, what direction is your car accelerated? How do you know?
\qquad
\qquad

2 If your car is hit head on by another car, what determines whether your car continues to move forward or backward after the collision?

3 If you hit another car on the side, at right angles to its direction of forward motion, what immediately happens to the motion of the other car upon impact? Of course, the other driver may immediately respond by changing the speed and direction of his/her car. This is a difficult observation to make unless you work with a friend in the other car.

4 What is the role of friction between the cars and the floor? In which direction do you think that the friction is greater?
\qquad
\qquad
\qquad
(5) Answer these questions using the concepts of energy, impulse and Newton's Laws of Motion. Don't use vague terms like "shock".
a) What is the reason for having the rubber bumpers around the cars?
\qquad
b) Why would you not design a bumper car with very soft bumpers?
c) Why would you not design a bumper car with no bumpers at all?
\qquad
\qquad

6 If you were riding the only car with a much smaller mass that the other cars, how would your ride be different from the one you have just experienced? Explain why.
(7) Under what conditions do the following happen?
a) driver will feel the strongest jolt.
b) driver will be thrown forward.
c) car will accelerate at the crash.
d) driver will be thrown backward.
e) car will change direction at crash.

8 How is electrical energy supplied to the bumper cars? Describe and draw a complete circuit for one of the cars.
(9) During a collision, is kinetic energy conserved? Explain.

Hellevator

A. Data
(1) Height of tower \qquad m
(2) Height of riders at top of flight \qquad m
(3) Mass of riders (estimated) \qquad kg
(4) Time of ride up \qquad s
(5) Time of ride down (freefall) \qquad S
(6) Measure the forces: (using cell phone accelerometer) during ride up \qquad
at top of ride \qquad g's
during ride down \qquad g's
at bottom of ride \qquad g's

B. Qualitative Tasks

(1) Have the riders take their pulse rate:
(a) before they get on this ride. \qquad
(b) immediately after they have finished this ride. \qquad
(c) Explain any changes. \qquad
\qquad
\qquad
(2) In a few words, have the riders describe how they felt:
(a) before the ride started \qquad
(b) at the highest point of the ride \qquad
(c) during free fall \qquad
(d) at the end of the ride \qquad
(3) Where on the ride do riders experience:
(a) more gs than normal \qquad
(b) less gs than normal \qquad
(4) Explain the riders' sensations and the gs they felt in \#3 in terms of the physics of the ride.

C. Quantitative Tasks

(1) Calculate the average velocity as the riders travel up the ride in m / s.
\qquad m / s
(2) Calculate the final velocity the riders reach at the end of their free fall in m / s.
\qquad m / s
(3) Use the maximum height the cars reach to calculate the initial velocity of the ride.
\qquad m/s

4 If the acceleration up the tower happens during the first 5 meters, what is the acceleration during this time?
\qquad $\mathrm{m} / \mathrm{s}^{2}$
\qquad g's
(5) Use the acceleration found in \#4 above to calculate the force necessary to achieve the acceleration.
\qquad N
(6) What is the acceleration during the free fall part of the ride?
\qquad $\mathrm{m} / \mathrm{s}^{2}$

Hell's Gate

Stand in a position where you can observe the ride. Take data and answer the following questions. After reading the questions, you must determine what data you need to collect.

A. Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Measurements while on ride: (using cell phone accelerometer)
Maximum \mathbf{g} \qquad g's at \qquad (location*)
*if you can tell from the cell phone accelerometer
Minimum \mathbf{g} \qquad g's at \qquad (location*)

B. Qualitative Tasks

(1) Have the riders take their pulse rate:
(a) before they get on this ride.
(b) immediately after they have finished this ride. \qquad
(2) In a few words, have the riders describe how they felt:
(a) before the ride started \qquad
(b) during the ride \qquad
(c) after the ride ended \qquad
(3) Where on the ride do the riders experience:
(a) more g's than normal \qquad
(b) less g's than normal \qquad

4 Explain the riders' sensations and the g's they felt in \#3 in terms of the physics of the ride.
calculations

C. Quantitative Tasks

(1) Calculate the average speed during the ride in m / s.
\qquad
(2) Estimate the mass of the ride and the riders.
\qquad
(3) Calculate the amount of work necessary to move the ride and the riders from the lowest point to the highest point on the ride.
\qquad
(4) How much power do the motors have to supply to move the ride and the riders in calculation \#3?
\qquad
(5) Present data and calculations for any other portion of the ride.

Flume

Stand in a position where you can see the final drop of both rides, take data and answer the following questions. Some data will be provided, some will not. After reading the questions, you must determine what data you need to collect.

A. Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. Qualitative Tasks

(1) Look at the place where each boat begins its final drop. What can you say about the vertical height of each of these? Is one higher than the other, or are they both about the same height?
(2) According to your answer to the last question and considering the data which is supplied, what can you say about the potential energy of each boat when they have people of roughly the same weight?
(3) As you watch the boats make their drop, do you notice any difference in the path that each takes to the bottom?
(4) When each boat gets to the bottom of the run, what has happened to the potential energy each one had at the top?
(5) Does the amount of potential energy each loses depend on the path each one takes to the bottom?

Explain why or why not.

6 Considering everything you've answered so far, what would you expect to be true of the final velocity of each boat? Is one higher than the other or are they the same?
$(7$
If you put more people into a boat (thus increasing the mass) would you notice any difference in the final speed?
calculations \mid C. Quantitative Calculations
(1) Look at the place where each boat begins its final drop. Determine the vertical distance of this drop for each boat using any method you prefer. Is one higher than the other, or are they both about the same height? Show work or describe method for credit.

2 Using potential and kinetic energy relationships, calculate the theoretical maximum speed at the end of the final drop for each ride (assume no energy loss). Before you complain that this is too much work, think about it: will the different path each ride takes to the bottom affect the final speed? Show work for full credit.
(3) Go to a place where you can see the end of each ride. Calculate the final speed using the marked distances (see Data section). Should the speeds agree? Show work for full credit. Assume zero velocity at the top.
\qquad
\qquad

4 Do the results of \#2 and \#3 agree? List two reasons why they might not.

5 You have calculated the theoretical maximum speed at the bottom of the hill (\#2) and you have measured the actual speed at the bottom of the hill (\#3). Now select one of the hills and calculate the percent of energy that was at the top of the drop which was lost to friction during the drop. Assume the boat began from rest.

Extra for Experts: Do the same calculations as above but consider the boat's kinetic energy before making the final drop.
\qquad
\qquad
\qquad
\qquad
\qquad

Gladiator

This ride uses unusual centripetal force.

Procedure and Questions

Ride the Gladiator and answer the following questions.
(1) Does the large wheel at the centre of this ride turn clockwise (move to the left) or counter-clockwise (move to the right)?

2 What direction(s) does the small wheel, that holds the ride cars, turn? If it turns different directions, keep track of the direction of the turns for one full ride. For example, record how many times it turns in each direction.

Spins left: Doesn't spin: Spins right:
(3) Describe the forces you felt while on the ride. Are the forces always the same or do they change during the ride? If the forces change on the ride, where do they change? Draw a free body diagram of the forces that act on you at two different times on the ride.
\qquad

4 How many g's does this ride create? Are the g's constant or do they change? Explain your answer.

5 Concentrate your attention on one rider during the ride and follow this single rider's path for at least one full revolution of the ride. Draw a diagram of the path he took for that single revolution. (Your diagram should be what you would see if you watched the rider's path while looking down on the ride from above.)

The Beast

You been commissioned to investigate a wild ride here at Playland. Your job is to explore the ride and discover what secrets it holds. Continue with what's in this guide. You're going to need a steady stomach and maintain a level head if you are to tame this ride, but we're hoping that you have the dedication and perseverance to get the job done.

Procedure

Approach the Beast like you would any scientific problem. Take a moment before the ride starts and think about how it may make you feel. Gather your data as you ride the Beast. How do the forces affect your body? What sensations do you feel? Then go over your data and interpret the results. Were you right? Did you predict how the ride would make you feel? Or did your data and experiences push you in totally new direction? Once you have recovered from the ride, answer the questions below.

Questions - Bronze Level

(1) What was your first impression when you saw the Beast?
\qquad
\qquad
(2) Before you rode the Beast for the first time, what did you think the first ride was going to feel like?
\qquad
\qquad
\qquad
(3) Immediately after riding the Beast for the first time, how did you feel? Describe in detail your experience.
\qquad

4 Did you successfully predict how the Beast would make you feel? What did you predict that was right, what was different?
(5) What forces did your body experience when riding the Beast? Where they same throughout the whole ride or did they change at some point?
6. Compare how you felt when the ride was in full swing to the bottom of the swing and when you were at a standstill.
(7) When the ride is moving, which direction do you feel pushed? Is there a name for this force?

Collect data to support your observations.

8 If the ride was to increase in speed, does the pushing sensation increase by the same amount? (i.e. If the speed doubled, would the pushing sensation double).

Questions - Silver Level

(9) Think of three scientific questions, other than the ones posed above, that you could ask about the Beast. Then answer your own questions.
a) Question: \qquad
\qquad
\qquad
a) Answer: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Question:
b) Answer: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) Question: \qquad
\qquad
\qquad
c) Answer:
\qquad
\qquad
\qquad
\qquad
\qquad

10 Explain any principles of science you saw in the ride. List three things you experienced / learned during the ride.
a)
\qquad
\qquad
\qquad
\qquad
b) \qquad
\qquad
\qquad
\qquad

c)
\qquad \longrightarrow
\qquad
\qquad
\qquad

Physics II Quiz

List the number (or numbers) on the Coaster that best match the phrases below:
\qquad freefall area
\qquad weightless zone
\qquad where a machine makes the ride go instead of gravity
\qquad where car moves because of momentum roll
\qquad banked curve
\qquad parabolic arc
\qquad centripetal force at work
\qquad greatest gravitational potential energy
\qquad where the Coaster's velocity increases
\qquad high g-force zone
\qquad where car moves the slowest assuming a frictionless track
\qquad where riders decelerate
greatest kinetic energy

On the Coaster, positive g's are felt for very short time periods. Periods of 0 to 1 g are maximized to minimize rolling friction with the track. Negative g's are avoided as much as possible for obvious safety reasons.

Recall your own Coaster experiences and combine them with your understanding of Physics.
a. When would you expect to pull the most g's on the Coaster?
\qquad
\qquad
\qquad
b. When would you expect to be nearly weightless?
\qquad
\qquad
\qquad
\qquad
c. When would you expect to pull negative g's? Which seat would be most likely to provide this experience?
\qquad
\qquad
\qquad
\qquad
d. Where would you expect to pull lateral g's (to the sides of the Coaster)?
\qquad
\qquad
\qquad
\qquad
e. Where would you expect to pull longitudinal g's (forward or backward)?
\qquad
\qquad
\qquad
\qquad

Section D Physies I2 Worksheets

page D-1	Atmosfear
page D-3	Scrambler
page D-5	Enterprise
page D-7	Coaster
page D-9	Hellevator
page D-11	Hell's Gate
page D-13	Pirate Ship
page D-15	Flume
page D-17	Skybender
page D-18	Breakdance
page D-20	The Beast
page D-24	Physics 12 Quiz

Atmosfear

A. Data
$(1$ Distance from center of rotation to chain attachment \qquad m
(2) Length of chain \qquad m
(3) Radius of rotation \qquad m
(4) Time for one revolution \qquad S
(5) Angle of swing to rotation axis \qquad。
(6) Accelerometer reading \qquad g's

B. Qualitative Tasks

(1) Will an empty swing or one with someone in it ride higher? Why?
\qquad
\qquad
\qquad
\qquad
(2) Describe your sensations as the ride increased in speed.
\qquad
\qquad
\qquad
\qquad
(3) Explain your sensations described in \#2 in terms of the physics of the ride.
(4) Watch the ride from the beginning until it reaches full speed. What happens to the angle of the chain attached to the seats as the ride increases in speed? Why?
\qquad
\qquad
\qquad
\qquad
C. Quantitative Calculations
(1) Using the radius of rotation, determine the speed and centripetal acceleration of the ride. Determine the centripetal force.
\qquad m/s
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(2) Draw a vector diagram of the forces acting on you during the ride. The forces are due to the different accelerations you are undergoing. Use the angle of the swing to make your vector diagram as accurate as possible.
(3) Using the calculations in \#1, the vector diagram in \#2 and the acceleration due to gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$, determine the resultant acceleration that you should feel. How many g's was it?
(4) Compare the value in \#3 to your accelerometer reading. Explain any similarities or differences. What is your percent error?
(5) From \#3 above, determine the angle at which you should have been swinging. Compare this to Data \#5. Explain any differences.
\qquad
\qquad
\qquad
\qquad
D-2

Scrambler

A. Data

(1) Estimated radius of primary axis (center of ride to center of cluster)
(2) Estimated radius of secondary axis (center of cluster to rider)
(3) Turning rate around primary axis
(4) Clockwise or counterclockwise rotation around primary axis
(5) Turning rate around secondary axis
(6) Clockwise or counterclockwise rotation around secondary axis
\qquad m
\qquad m
\qquad rev/min
\qquad
\qquad rev/min

\qquad
7 Concentrate your attention on one rider, and follow this single rider's motion for at least one full rotation of the ride. Draw the path of the rider for one turn.
(Your sketch should be what you would see the rider do if you were looking down on the rider from above.)
\square

B. Qualitative Tasks

(1) Describe the sensations you felt during the ride.
(2) Describe the direction of both the primary and secondary rotation. Are they in the same or different directions?
(3) What effect does \#2 have on your sensations during the ride?

4 What would happen if both the primary and secondary rotation were in the same direction? How would a ride like that feel?

C. Quantitative Tasks

(1) Determine the centripetal acceleration around the primary axis.
\qquad

2 Determine the centripetal acceleration around the secondary axis..
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(3) Draw a diagram showing both rotation axes. Where is acceleration additive? Where is acceleration in opposite direction?
(4) Give the net acceleration at each point in \#3.

Enterprise

A. Data

Estimated radius of the ride \qquad
Estimated time of one revolution when ride is at full speed. \qquad s

Measured values (using the cell phone accelerometer app):
Acceleration experienced at side of vertical path
Acceleration experienced at top of vertical path \qquad g's

Acceleration experienced at bottom of vertical path \qquad g's

B. Qualitative Tasks
(1) Observe the Enterprise as it is starting out. As it starts to move in a horizontal orbit, what do you notice about the cars in relationship to the ride?
\qquad
\qquad
(2) Continue to watch the ride as it changes from horizontal to vertical. Now what do you notice about the cars in relationship to the ride?
(3) Why do you suppose that the cars changed their positions?
\qquad
\qquad

4 How long does it take one car to go completely around on this ride?

5 While riding the ride, notice at what particular point you appear to be going faster. Where on the ride do you feel this? (At the top, bottom, etc.) Why do you suppose that this is so?
(6) Also notice at what point in the ride you appear "heavier". Where on the ride do you feel this? Why do you suppose that this is so?

7 Observe the movement of the weight on your Astrolab as you experience the ride. Describe the movement of the weight through one complete turn of the ride when the ride is going sideways and when the ride is going up and down.

C. Quantitative Calculations

(1) Calculate the circumference of the ride.
\qquad m
(2) Calculate the frequency of the ride at full speed.
\qquad rev/s
(3) Calculate the centripetal acceleration during the ride and the net force at the top and bottom of each turn.

a_{c}	$\square \mathrm{m} / \mathrm{s}^{2}$
$\mathrm{~F}_{\text {net }}$ at top	$\longrightarrow \mathrm{N}$
$\mathrm{F}_{\text {net }}$ at bottom	

4 Compare the values of the calculated $F_{n e t}$ and those from your accelerometer.
Explain any differences.
(5) Where is acceleration at its highest value? At the top or the bottom of the ride?
(6) Draw a free body diagram of the forces acting on you at the top and bottom of each turn. How does this help explain your calculations and accelerometer readings?

Coaster

A. Data

Length of track $1,001 \mathrm{~m}$

Measurements while standing in line:

Time for ride: \qquad s

Length of train: \qquad m
(Hint: length of car \mathbf{x} number of cars)

Measurements during the ride (using cell phone accelerometer)
(Hint: Sit in rear cars to make measurements on ride)
Maximum g \qquad g's at \qquad (location*)
*if you can tell from the cell phone accelerometer
Minimum \mathbf{g} \qquad g's at \qquad (location*)

Measurements from observation area:

1. Distance from hill to observation area: \qquad m
Angle: \qquad ${ }^{\circ}$

Calculated height of hill: \qquad m
2. Time for train to go from bottom to top of first hill \qquad s
3. Time for train to pass point at top of hill \qquad s
4. Time for train to pass point at bottom of hill \qquad _s
5. Time for train to go from top of hill to bottom \qquad s

B. Qualitative Observations

(1) Where was the highest hill on the ride? Why is it there?

2 Did you feel lateral forces while on the ride (i.e. were you thrown from side to side in the train car)? If so, what forces caused that feeling? Use a diagram if necessary to help explain.
\qquad
\qquad
\qquad
(3) Where on the ride did you feel you were going the fastest? Why?
\qquad
\qquad
(4) Where on the ride did you feel like you were lifted off your seat? How did the ride cause that feeling?
(5) Draw a free body diagram labeling the forces acting on you at the top and bottom of the first hill. Is the net force greater or less than normal in these places?
\qquad
\qquad
\qquad
\qquad
calculations

C. Quantitative Calculations

(1) Average speed of train for total ride (show work):
\qquad
\qquad
(2) Speed at top of first hill (show work):
\qquad
m / s
\qquad km/h
(3) Speed at bottom of first hill (show work using kinematics):
\qquad m / s
\qquad km / h
(4) Calculate the acceleration of the train during the trip down the first hill.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(5) Use potential and kinetic energy relationships to determine the speed of the train at the bottom of the first hill.
\qquad m/s
(6) Compare answers \#3 \& \#5 and explain the results.
\qquad
\qquad
\qquad

Hellevator

A. Data
(1) Height of tower \qquad m
(2) Height of riders at top of flight \qquad m
(3) Mass of riders (estimated) \qquad kg
(4) Time of ride up \qquad s
(5) Time of ride down (freefall) \qquad
(6) Measure the forces: (using cell phone accelerometer) during ride up \qquad g's
at top of ride \qquad g's
during ride down \qquad g's
at bottom of ride \qquad g's

B. Qualitative Tasks

(1) Have the riders take their pulse rate:
(a) before they get on this ride. \qquad
(b) immediately after they have finished this ride. \qquad
(c) Explain any changes. \qquad

(2) In a few words, have the riders describe how they felt:
(a) before the ride started \qquad
(b) at the highest point of the ride \qquad
(c) during free fall
(d) at the end of the ride \qquad
(3) Where on the ride do riders experience:
(a) more gs than normal \qquad
(b) less gs than normal \qquad
(4) Explain the riders' sensations and the gs they felt in \#3 in terms of the physics of the ride.

C. Quantitative Tasks

(1) Calculate the average velocity as the riders travel up the ride in m / s.
\qquad m/s

2 Calculate the final velocity the riders reach at the end of their free fall in m / s.
\qquad m/s
(3) Calculate the initial velocity of the ride needed to propel it to its maximum height.
\qquad m / s
(4) If the acceleration up the tower happens during the first 5 meters, what is the acceleration during this time?
\qquad $\mathrm{m} / \mathrm{s}^{2}$
\qquad g's
(5) Use the acceleration found in \#4 above to calculate the force necessary to achieve the acceleration.
\qquad N

Hell's Gate

Stand in a position where you can observe the ride. Take data and answer the following questions. After reading the questions, you must determine what data you need to collect.

A. Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Measurements while on ride: (using accelerometer)
Maximum g \qquad g's at \qquad (location)

Minimum \mathbf{g} \qquad g's at \qquad (location)

B. Qualitative Tasks

(1) Have the riders take their pulse rate:
(a) before they get on this ride. \qquad
(b) immediately after they have finished this ride. \qquad

2 In a few words, have the riders describe how they felt:
(a) before the ride started \qquad
(b) during the ride \qquad
(c) after the ride ended \qquad
(3) Where on the ride do the riders experience:
(a) more g's than normal
(b) less g's than normal \qquad

4 Explain the riders' sensations and the g's they felt in \#3 in terms of the physics of the ride.

C. Quantitative Tasks

(1) Calculate the average speed during the ride in m / s.
\qquad m/s
(2) Estimate the mass of the ride and the riders.
\qquad kg
(3) Calculate the amount of work necessary to move the ride and the riders from the lowest point to the highest point on the ride.
\qquad
(4) How much power do the motors have to supply to move the ride and the riders in calculation \#3?
\qquad
(5) Present data and calculations to show why your maximum g measurement was accurate.

Pirate Ship

A. Data

1 Time for one period (complete cycle)
(2) Estimated radius of the ship's path \qquad s
(3) Maximum angle of displacement
(4) Maximum accelerometer reading m
\qquad $-\quad$
\qquad

B. Qualitative Tasks

1 Consider the rocking boat described above as a pendulum. In a simple pendulum, the mass is considered to be concentrated at the end of a weightless string.

A simple pendulum at small displacements exhibits simple harmonic motion with the period \mathbf{t} of the pendulum's swing expressed by the following relationship:

$$
\mathrm{t}=2 \pi \sqrt{\left.\frac{\mathrm{~L}}{\mathrm{~g}} \right\rvert\,} \quad \text { Where } \mathbf{L}=\text { the length of the pendulum's string. }
$$

Calculate the period of the Pirate if it were a pendulum.
\qquad

2
From your results above, decide if the boat is a simple pendulum. Why or why not?
(3) In each arc, where did you feel:
a) the strongest push against your back?
b) the most pressure against your seat?
c) the least pressure against your seat?
(4) When did you feel you were going the fastest?

5 If you have a vertical accelerometer, hold it in front of you during the ride. Observe the motion of the suspended mass.
a) In what part of the ride was the mass pulled farthest down the tube?
b) In general, describe the motion of the suspended mass during an arc and during a loop.
C. Quantitative Calculations
(1) Calculate the distance of the ship's arc.

2 Calculate the ship's average speed in the arc.
a) \qquad
b) \qquad km/h
(3) Calculate the average centripetal acceration experienced in the loop. Include your unit label.
(4) Express the answer to \#3 above in g's.

Flume

Stand in a position where you can see the final drop of both rides, take data and answer the following questions. Some data will be provided, some will not. After reading the questions, you must determine what data you need to collect.

A. Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B. Qualitative Tasks

(1) Look at the place where each boat begins its final drop. What can you say about the vertical height of each of these? Is one higher than the other, or are they both about the same height?
(2) According to your answer to the last question and considering the data which is supplied, what can you say about the potential energy of each boat when they have people of roughly the same weight?
(3) As you watch the boats make their drop, do you notice any difference in the path that each takes to the bottom?
(4) When each boat gets to the bottom of the run, what has happened to the potential energy each one had at the top?
(5) Does the amount of potential energy each loses depend on the path each one takes to the bottom?

Explain why or why not.

6 Considering everything you've answered so far, what would you expect to be true of the final velocity of each boat? Is one higher than the other or are they the same?

7 If you put more people into a boat (thus increasing the mass) would you notice any difference in the final speed?

calculations \mid C. Quantitative Calculations

(1) Look at the place where each boat begins its final drop. Determine the vertical distance of this drop for each boat using any method you prefer. Is one higher than the other, or are they both about the same height? Show work or describe method for credit.
\qquad
\qquad
(2) Using potential and kinetic energy relationships, calculate the theoretical maximum speed at the end of the final drop for each ride (assume no energy loss). Before you complain that this is too much work, think about it: will the different path each ride takes to the bottom affect the final speed? Show work for full credit.
(3) Go to a place where you can see the end of each ride. Calculate the final speed using the marked distances (see Data section). Should the speeds agree? Show work for full credit. Assume zero velocity at the top.
\qquad
\qquad
(4) Do the results of \#2 and \#3 agree? List two reasons why they might not.

5 You have calculated the theoretical maximum speed at the bottom of the hill (\#2) and you have measured the actual speed at the bottom of the hill (\#3). Now select one of the hills and calculate the percent of energy that was at the top of the drop which was lost to friction during the drop. Assume the boat began from rest.

Extra for Experts: Do the same calculations as above but consider the boat's kinetic energy before making the final drop.
\qquad
\qquad
\qquad
\qquad
\qquad

Skybender

Data

Estimated distance from centre of rotation to seat (when in the rest position) \qquad m
Estimated distance from centre of rotation to seat (in extended position) \qquad m

Time for one revolution of the ride at max speed \qquad sec

Accelerometer reading from the app \qquad g's

Questions

(1) Why do you think they designed the ride so that you would be on an angle when extended?
(2) Using the average value from the accelerometer on the app, calculate the centripetal force.
(3) Calculate the speeds at the top (arm extended) and bottom (arm in the down position)
(4) Using the average reading from the accelerometer, calculate the radius of the ride.

5 Using a vector diagram, show the direction of your acceleration.

Break Dance

A. Data
(1) Length of time for complete ride
(2) Length of time for one primary rotation on the ride
(3) Number of secondary rotations in one primary rotation
(4) Diameter of the ride
(5) Diameter of secondary rotation

6 g force readings on the cell phone accelerometer app:
\qquad s
\qquad
\qquad
\qquad m
\qquad m minimum reading while the ride is moving \qquad g's maximum reading while the ride is moving \qquad g's
(7) Mass of the rider \qquad kg
8 Concentrate your attention on one rider during the ride and follow this single rider's path for at least one full revolution of the ride. In the box a the right, draw a diagram of the path he took for that single revolution. (Your diagram should be what you would see if you watched the rider's path while looking down on the ride from above.)

B. Qualitative Tasks

(1) Does the primary rotation on this ride turn clockwise or counter-clockwise?
(2) What direction(s) does the secondary rotation on this ride turn? If it turns different directions, keep track of the direction of the turns for one full ride.

Spins clockwise: Doesn't spin: Spins counter-clockwise:
(3) Explain the rider sensations and the g's they felt due to the results in question 2 and the physics of the ride.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C. Quantitative Tasks

(1) Calculate the average velocity of the ride.
\qquad m/s
(2) Calculate the average centripetal acceleration and centripetal force the rider feels due to the primary rotation of the ride.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
\qquad
(3) Calculate the average centripetal acceleration and centripetal force the rider feels due to the secondary rotation of the ride.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
\qquad N

4 Calculate the net centripetal force and net centripetal acceleration due to your results from questions \#2 and \#3. How do these values compare to your accelerometer readings. Explain any differences.
(5) Draw a vector diagram for different places on the ride and use it to explain the physics of the ride and the sensations you feel.

The Beast

You been commissioned to investigate a wild ride here at Playland. Your job is to explore the ride and discover what secrets it holds. Continue with what's in this guide. You're going to need a steady stomach and maintain a level head if you are to tame this ride, but we're hoping that you have the dedication and perseverance to get the job done.

Procedure

Approach the Beast like you would any scientific problem. Take a moment before the ride starts and think about how it may make you feel. Gather your data as you ride the Beast. How do the forces affect your body? What sensations do you feel? Then go over your data and interpret the results. Were you right? Did you predict how the ride would make you feel? Or did your data and experiences push you in totally new direction? Once you have recovered from the ride, answer the questions below.

Questions - Bronze Level

(1) What was your first impression when you saw the Beast?
\qquad
\qquad
(2) Before you rode the Beast for the first time, what did you think the first ride was going to feel like?
\qquad
\qquad
\qquad
(3) Immediately after riding the Beast for the first time, how did you feel? Describe in detail your experience.
\qquad

4 Did you successfully predict how the Beast would make you feel? What did you predict that was right, what was different?
(5) What forces did your body experience when riding the Beast? Where they same throughout the whole ride or did they change at some point?
6. Compare how you felt when the ride was in full swing to the bottom of the swing and when you were at a standstill.
(7) When the ride is moving, which direction do you feel pushed? Is there a name for this force?

Collect data to support your observations.

8 If the ride was to increase in speed, does the pushing sensation increase by the same amount? (i.e. If the speed doubled, would the pushing sensation double).

Questions - Silver Level

(9) Think of three scientific questions, other than the ones posed above, that you could ask about the Beast. Then answer your own questions.
a) Question: \qquad
\qquad
\qquad
a) Answer: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Question:
b) Answer: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) Question: \qquad
\qquad
\qquad
c) Answer: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 Explain any principles of science you saw in the ride. List three things you experienced / learned during the ride.
a) \qquad
\qquad
\qquad
\qquad
\qquad
b) \qquad
\qquad
\qquad
\qquad

c)
\qquad
\qquad
\qquad
\qquad
\qquad

Questions - Gold Level

Challenger Questions

i) Find the combined acceleration at the bottom of the swing.

Measurements needed:
Arm Radius (estimate) \qquad
Velocity at the bottom \qquad
$($ Hint: Average velocity $=$ Platform Length / Time)

Acceleration at the bottom of the swing $=$ \qquad

ii) Use the accelerometer app to isolate the specific axis and verify your calculations in question i.
iii) Find the centripetal acceleration of the seated platform.

Measurements needed:

- Measured Radius \qquad
- Measured Velocity \qquad

Physics I2 Quiz

A coaster-type ride begins at the top of an 11 metre hill. After going down the hill, the cars make a lateral circle with a radius of 8 metres. The data below was collected on this ride.

Data

Train Length	$=10.5 \mathrm{~m}$
Time to pass point A	$=2.1 \mathrm{~s}$
Time to pass point B	$=0.7 \mathrm{~s}$
Height of hill	$=11 \mathrm{~m}$
Radius of lateral circle	$=8 \mathrm{~m}$

(1) Calculate the velocity of the car at point A .
\qquad m/s
(2) Calculate the velocity of the car at point B.
\qquad m/s
(3) Use the energy relationship $\left(\mathrm{E}_{\mathrm{P}}+\mathrm{E}_{\mathrm{K}}\right)$ to calculate the velocity at point B .
\qquad m / s
(4) Compare answers \#2 and \#3 above and explain any differences.
(5) Calculate the centripetal acceleration at point C .
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(6) Calculate the bank of the track at point C to ensure no lateral acceleration occurs.

Show your work and a vector diagram.

Section E Make-Up Assignments

page E-1 Coaster Calculations
page E-2 Klothoid Loop
page E-4 First Nations Science

Coaster Calculations

The following data pertains to the American Eagle coaster near Chicago, Illinois. Use the data table to work the problems listed below.

Data

Track length	$=1417 \mathrm{~m}$
Train mass	$=4536 \mathrm{~kg}$
Greatest height	$=38.7 \mathrm{~m}$ (first incline)
Length of 1st vertical drop	$=44.8 \mathrm{~m}$
Angle of 1st drop	$=55^{\circ}$
Length of 1st lift	$=100 \mathrm{~m}$ (chain speed: $2.7 \mathrm{~m} / \mathrm{s})$
Maximum speed	$=106.7 \mathrm{~km} / \mathrm{h}$
Length of ride	$=2 \mathrm{~min}, 23 \mathrm{~s}$
Gravity forces	$=\mathrm{Up}$ to 1.65 g 's in the dips $\left(1 \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) How long does it take for the coaster to climb the first hill?

(2) What is the climbing angle of the first incline?
(3) What is the maximum gravitational potential energy for the coaster as measured above the lowest point in the ride?
(4) What is the average speed of the entire ride?
(5) What is the maximum kinetic energy for the coaster?
6. Assume a speed at the top of the 1 st hill of $2.7 \mathrm{~m} / \mathrm{s}$ and a vertical drop of 44.8 m . What should be the speed at the bottom of the hill with no friction or air resistance losses?

7 How large are the actual friction and air resistance losses in km / h ?

8 How long is the track down the first drop?
(9) What is the friction and air resistance loss per metre during the drop?

10 If the coaster had the same frictional and air resistance losses for the whole trip, would it reach the station?

11 Do you expect friction/air resistance losses to be greater or less in the latter part of the ride? Explain.

The Klothoid Loop

A Klothoid loop has an ever decreasing radius as the rider enters the loop at point \mathbf{A} and climbs to point \mathbf{B}.
From point \mathbf{B} to point \mathbf{C} the loop is circular, with constant radius. At point \mathbf{C} the radius begins to increase until it reaches its maximum value again at point \mathbf{D}.
(1) What is the advantage of this curve over a circular loop?
\qquad

\qquad
\qquad
\qquad
(2) Assume a coaster speed of $96.5 \mathrm{~km} / \mathrm{h}$ as the centre of the coaster enters the loop, a loop height of 23.16 m , and a uniform decreasing radius of curvature from 49 metres to 7 metres with a circular top loop of 130.6°. Next assume a frictionless track and calculate the velocity as the middle of the coaster passes: (a) Point \mathbf{A}, (b) Point \mathbf{B}, and (c) Point \mathbf{C}.
a) \qquad
b) \qquad
c) \qquad

The picture below illustrates a Shuttle Loop Coaster which uses a Klothoid loop.
The coaster carries riders through the loop forward and then backward. A slingshot flywheel catapult mechanism propels the coaster along the track.

The coaster makes the loop going forward and climbs the left ramp. The coaster then rolls down the ramp, through the loop backward, and up the right ramp. In just over 30 seconds, the coaster is back at rest in the station.

Accelerometers mounted in the front and rear cars measure the force component perpendicular to the rider's seat. The table below gives the data recorded. Use it in answering the following questions:

Accelerometer Data

Going Forward and Backward Through Loop

| Entering loop forward | (Point A) | $=4.8 \mathrm{~g}$ (front car) | 3.4 g (back car) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Top of loop forward | (Point B) | $=1.5 \mathrm{~g}$ (front car) | 1.4 g (back car) |
| Exit of loop forward | (Point C) | $=3.2 \mathrm{~g}$ (front car) | 4.8 g (back car) |
| Entering loop backward | (Point C) | $=2.6 \mathrm{~g}$ (front car) | 4.2 g (back car) |
| Top of loop backward | (Point B) | $=0.5 \mathrm{~g}$ (front car) | 0.3 g (back car) |
| Exit of loop backward | (Point A) | $=4.2 \mathrm{~g}$ (front car) | 2.8 g (back car) |

(3) Explain differences in accelerometer readings for the front and back cars at Point A going forward and backward.
\qquad
\qquad
\qquad
\qquad
(4) Explain why the g-force is less at the loop top when the coaster goes through the loop backward.
\qquad
\qquad
\qquad
\qquad

We are taught and learn a Euro-centric view of science. That makes sense because in North America we were settled mainly by Europeans. But there are other points of view that are often overlooked. In this activity you will be given a chance to explore other points of view and contributions to science by other cultures.To make it easier we will divide it into sections: transportation, housing, food and agriculture, and others like astronomy, medicine, fishing, sustainability, and environment. So, here we go...

Transportation

There are many surfaces we have to travel over: rivers, oceans, lakes, land, mountains, etc. Start with water. Two ways to travel on water are rowboat and canoe. Compare them. Research their use and development. Which is better for Canadian rivers, lakes, rapids, northern waters and oceans? Be prepared to present your
 findings to your class.

Next look at land travel. What are ways to move over land, including both flat land and mountains?
Again be prepared to present your findings to your class.

Food and Agriculture

The origin of the foods we eat come from many places. Select a food and research it. Focus on its origin and importance to our diet. Which foods have a First Nations origin and which came from other countries?

Astronomy

When humans developed into a farming society, it became important to know the yearly cycle and the seasons. There are examples of this around the world, from Stonehenge in England to structures in Mexico like Tulum and Chichen Itza. There are also several First Nations examples. For this topic, research one example of how we measure a year. Look at both past examples and modern ones.

Another thing people have done is look at the stars. They notice shapes of images that some stars seem to make, called constellations. Research one constellation. Draw a picture of the image made by the stars and write about the legend or story that goes with it. Do the First Nations people have a different name and story? Is the name or story different in another country? Finally, draw your own constellation of 3 to 5 stars. Draw the image they make and write a story about the image. Be prepared to tell the class what you learned.

Medicine

Medicines and health remedies come from many places. For this topic, research the history of one medicine.
Be prepared to present your findings to the class. Which medicines have a First Nations origin?

Fishing

Besides plants, fish have long been a part of the human diet. Research one kind of food fish. Where does it live and how is it caught? Are these methods sustainable? Finally, has the fish been important for First Nations?

Summary

Write three things you have learned in this activity that you didn't know before. What is one question you still have about First Nations science? How could you answer your question?
Be prepared to share this with the class.

